
Lesson plan

``Tudor Vianu`` National High School of Computer Science
Subject: Informatics
Class: 11th grade
Teacher: Corina Ciobanu
Chapter: Trees
Theme: Binary Indexed Trees (BITs)
Type of lesson: acquisition of new knowledge
Objective framework:
Application development using algorithms common for trees
Objective reference:
To apply algorithms common for trees
Operational objectives:
Students must be able to:
O1: define a binary indexed tree
O2: identify a binary indexed tree
O3: correctly use theoretical concepts learned
O4: acquire algorithms for different operations (both modification and query)
O5: correctly analyze each problem and to write the properly program/sub-
program

Didactic strategies
Didactic principles

 The principle of participation and active learning
 The principle of ensuring the gradual progress of performance
 The principle of inverse connection

Learning methods
 Oral communication: conversation, explosion, problematization
 Action methods: exercise, learning through discovering

Instructional procedures
 Explanation in the communication stage
 Learning by doing, through problem solving
 Questioning by creating problem situations

 Revising conversation during the consolidation of knowledge stage
 Case study
 Guided observation and study

Interaction
 Frontal and individual; teacher – students, students-students
Directing teaching forms
 Directed by the teacher or independent
Means of teaching:
 Blackboard, chalk, educational software
Bibliography:
 Informatics – manual for 11th grade by Tudor Sorin;
 Introduction to Algorithms by T. Cormen, C. Leiserson, R. Rivest
 Data Structures and Algorithm Analysis in C by M. Weiss
Evaluation methods:
 Oral questions
 A set of applications

Content analysis:
C1: Definition of AIB
C2: Practical application
Lesson plan:

1. Preparing the lesson
 Creating and writing the didactic project
 Preparing the set of questions
 Preparing the set of applications
 Preparing the homework

2. Organization and preparation of the class
 Checking the attendance of students to class/doing the roll call

3. Focusing the attention of the students
 Announcing the subject
 Announcing the objectives
 Announcing the way in which the activity will be developed

4. Checking students’ prior knowledge

Preparing a set of questions in order to check and brush up on the theoretical
knowledge of students
-table 1-

Question Awaited answer
What is a tree? It is a connex graph without cycles.
What is the number of edges in a tree
with n nodes?

The number of edges in a tree with n
nodes is n-1.

What types of trees have we studied? Binary trees
Evaluation in this stage will be carried out by the teacher, and the main form
of interaction will be teacher-students.

5. Presentation of new knowledge(using the educational soft BIT/AIB)

Being given G=(X,V) a non-oriented connex graph, where X is the set of nodes
and U is the set of edges. A tree is such a graph which doesn’t have cycles.
*Presenting binary indexed trees.

The basic starting problem is the following : Being given a set/string of
numbers by length N, do the following operations efficiently:

 Add a valor x to an element from the string
 Return the sum of all the elements from an interval [x,y]

This data structure, binary indexed tree (we will be referring at it as `BIT`) can

do both operations (modification and interrogation) in an O(log N) complexity.

The BIT will be stored as a vector by size N, in which the element on the i
position will be equal to sum of elements from the interval [i-2k+1, i] from the
initial string, where k represents the number of terminal zeros from binary
representation of i.

For a better understanding of the mechanism, I will show next the positions
(with their representation in 2 base) from 1 to 15 with the intervals whose sum they
retain.

 1 (0001): [1, 1]
 2 (0010): [1, 2]

 3 (0011): [3, 3]
 4 (0100): [1, 4]

 5 (0101): [5, 5]

 6 (0110): [5, 6]
 7 (0111): [7, 7]
 8 (1000): [1, 8]
 9 (1001): [9, 9]

 10 (1010): [9, 10]

 11 (1011): [11, 11]
 12 (1100): [9, 12]

 13 (1101): [13, 13]
 14 (1110): [13, 14]
 15 (1111): [15, 15]

Interrogation/Query

Assuming that we want to find out the sum of an interval [1, x]. We know that
bit[x] retains the sum [x-2k+1, x], so, after we add bit[x] to the answer, minus x
with 2k and replay the algorithm. More precisely if we want to calculate sum [1,
13], we will just add bit [1101], bit[1100] and
bit[1000].

Next, it is presented a code of interrogation
function and in the figure 1 we can observe the
`division` of the intervals in a BIT.

int query(int poz){
 int answer = 0;

 for (; poz; poz -= zero(poz))
 answer += bit[poz];

 return answer;
}

Zero(poz) is a function which returns 2^number
of terminal zeros in base 2 of poz (position)

Once we can calculate the sums on intervals like
[1,x] we can move on immediately at intervals
like [x,y] because the sum(x,y) = sum(1,y) –
sum(1,x-1).

 Figure 1 (www.topcoder.com/tc)

Modification

Modification is executed almost in the same way as the interrogation. When we
want to modify the value on the position x we have to modify all y positions of
which intervals include x, too. For example, if we want to modify the value on
element 9, we will modify, in order (see figure 1 too): bit[9], bit[10], bit[12],
bit[16].

To identify the next position which can be modified we will add zero
(position)to the current position:

void update(int poz, int val){
 for (; poz <= n; poz += zero(poz))
 aib[poz] += val;
}

Calculating the zero() function
In order to keep the O(log N) complexity, we need to find an efficient method
(O(1)) to find out the number of terminal zeros in base 2 of a number, and also
2^its power. For this, we will use bits operations, &, | and ^ , and we can see below
a recap of how they work.

x y x & y x | y x ^ y
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

Let’s take for example a random number and assume that it has 3 terminal zeros in
base 2. xxxx1000
If we decrease 1 from that number it will look like that: xxxx0111
If we apply the opperator ^ between those two numbers, the x-es from front will
become 0 (because x^x=0): 00001111

Finally, applying the opperator & between the original number and the resulting
one, we will get exactly the desired result.

In order to ensure the feedback and evaluation of the performance the following
problems are given:

1. The analysis of complexity on given algorithms
2. Determination of zero function

